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ABSTRACT

This is a review paper which outlines the main points of the theory of

nonlinear semigroups and evolution governed by accretive operators. The

subject is now rather mature, so most of the principal ideas and results are

not new. However, the presentation here is organized differently from that in

other sources and does touch upon recent results. An attempt has been made to

make this paper a pleasant route to a certain view of the subject. This

manuscript represents the author's contribution to the proceedings of the

Symposium on Nonlinear Functional Analysis and Applications held in Berkeley

in July, 1983.
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NONLINEAR SEMIGROUPS AND EVOLUTION GOVERNED BY ACCRETIVE OPERATORS

Michael G. Crandall

In this review article we will outline some of the main points of the theory of 5-."

nonlinear semigroups and evolution governed by accretive operators. As the subject has

achieved a certain maturity, most of the principal ideas and results are not new.

However, the current presentation is somewhat different from others in its style and

choice of topics, and we have tried to make it pleasant reading for newcomers to the

subject. It does touch upon some recent results, and we hope it will be of interest.

The material is organized into 8 sections. Section I contains preliminaries and

introduces the subject via a "generation" theory point of view. Here one finds

elementary notions about semigroups, their generators, stronq solutions and accretive

-' operators. Section 2 introduces the notion of a "mild solution" of an abstract

initial-value problem, a notion which allows a certain unity and ease of expression in

the following discussion which would otherwise be severely hampered by a lack of

regular solutions. Mild solutions are, roughly, uniform limits of solutions of

suitable difference approximations of the problem under consideration. Section 3

- presents the basic convergence results which state that if suitable difference

approximations can be solved, then their solutions will converge. These results lie at

the heart of the theory and provide an ample supply of mild solutions.

Section 4 is off the usual track and presents something a bit more novel. Here,

in a model case, a relationship between Kato's theory of quasilinear evolution and the

results of Section 3 is exhibited.

Section 5 is also organized in an unusual way. Here we return to the generation

question and explain some of the highlights as well as a couple of open problems. .

These considerations are used to introduce more subtle conditions under which it can be
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proved that there are solvable difference approximations and recent remarks by

Kobayashi on the question of necessary conditions. This section is not referred to in .

what follows it.

In Section 6, at last, we concede to the conventional and discuss the regularity
J... 

-
of our mild solutions. Here the standard conditions guaranteeing the differentiabilty

of mild solutions and the pointwise satisfaction of the equations are given. This is .

also a natural place to describe the inequalities which Benilan proved uniquely

identify a mild solution when it exists.

Section 7 briefly describes the most useful auxiliary results of the theory.

These results concern the continuous dependence of solutions on the equation,

representation of solutions and compactness criteria of various sorts.

Few of the results stated here are proved, although some description of the line

of argument is given from time to time. Similarly, we have omitted all references in

the text proper, as comments as to who did what interrupt the flow and do not serve a

browsing reader well. We partially correct this in Section 8 where further comments.

are made on the material of the previous sections and (incomplete) references are

given. Here we also attempt to refer to some of the current activity in this area of

which we are aware, but the field has become too vast to attempt any sort of .,.- '

completeness in describing either the old or the new in an article of moderate *",*** '.

length. For example, we have not attempted to discuss questions of asymptotic

behaviour, an area which has enjoyed a great deal of relatively recent activity, in the

text (but we do give some references in Section 8). An even more profound omission

concerns applications, which we at first thought to approach somehow. However, this

idea was abandoned owing to our inability to come up with a satifactory scheme that was

not inferior to suggesting the reader refer to Crandall (26), Evans (43] and Barbu 13]

(in that order). This will not yield an up-to-date view of the situation, but it will

provide some simple examples and then an accurate impression of the nature and range of

applications. More recent references are given in Section 8.

-2-
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it should be mentioned that this review is affected by work the author has done
with Doenilan and Psy an the smail book t13], which is in a state of perpetual

preparation. The author is also indebted to 8. Oharu, A. Pazy and B. Reich for their

coments on this paper.

Section 1. Preliminaries ..

The origins of this subject lie in questions posed by its pioneer. about the

"generation" of seigroups of transformations. We adopt this point of view as a

pedagogical device, although a more "applied" attitude holds away at the moment. Thus '* -.

we begin by defining the class of somigroups under consideration and observing

properties which their "genrators* night be expected to have. This leads us naturally ',-

to the class of accretive operators.

Let X be a real Sanach space with the norm I I. The norm of the dual space Xe of

X will also be denoted by 1 1. If C is a subset of X, a seomigroup on C will man a

collection {S(t): 0 4 tj of self-maps of C with the properties (i) below:

(i) S(O)x - x and (t)S(r)x - S(t + r}x when 0 ( t, T and x a C.

Note that the value of S(t) at x 6 C is written S(t)x even if 8(t Is not a linear

function. A semigo- up S on C is a continuous semigroup if "*;"

(ii) The mapping [O,o)xC 3 (t,x) S S(t)x E C is continuous when C

carries the norm topology of X.

We are mainly interested in the situation in which the continuity of S(t)x in the

"state variable" x is special. A continuous semigroup 8 on C which satisfies

(III) 18(t)x -S(t)yl Ix - yl for 0 1 t and x, y 6 C,

is said to be nonSEx sive or a oenigro of contractions. More generally, if there in

a number t such that

(iv) IS(t)x - S(t)y C e0 Ix - yl for 0 4 t and x, y C,

then we say that 8 is a cuasicontractive (of type w) semigroup on C. Of course, if

either (II) or (v) hold, then a in continuous an soon as t Stt)x is continuou for"

each x a c.

-3-
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The notion of a semigroup is an abstraction of the notion of a uniquely solvable

initial-value problem of the form

du
S. ~+ Au-0, ***

(IVP)
u(O) - x,

where A is a (nonlinear) operator A:D(A) C X + X. If for each x e C (IVP) has a unique

solution (in some sensel) u(t) on (0,0), then putting S(t)x - u(t) should define a

semigroup on C. Further properties of the semigroup should correspond to further

properties of the operator A and the notion of solution involved, and ways of relating

semigroupe and initial-value problems (or related objects) we will refer to here as

*generation theory".

The most obvious way to attempt to associate an initial-value problem (IVP) with a

semigroup S on C is to compute the operator

A x - lim x - St)x
S t

whose domain D(AS ) is the set of x e C such that the limit exists, and then hope

"solving" (IVP) with A - AS will return S. The operator -AS is called the -

infinitesimal generator of S. Let us see how the quasicontractive property (iv) of a

semigroup S would be reflected in its infinitesimal generator. If S satisfies (iv),

then for 0 ( X, t

Ix-x+A.(
x  Ss) W (t)x), ) (1+ )Ix - x1 - Is(t)x - S(t)xlt t .,t.-

(1+A(1 - e )/t)lx - xl

so if x, x are in D(AS) we may pass to the limit to find that

Ix - x + X(Asx - Asx) ) (I1 - MAw)Ix - xl for x, x 6 D(As).

We will refer to this property by saying that AS + bl is accretive. More precisely, if

A is an operator then A + wl is accretive if

(1.1) Ix - x + A(Ax - Ax)l ; (1 - AW)x - xl for x, xe D(A) and A > 0.

In the special case that A + 01 is accretive we simply say that A is accretive. (There

is a little subtlety here, and we leave it to the reader to check that A + WI is

-4- 9
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accretive if and only if A + in! is accretive.) It follow from the above remarks that

if 8 in a sesigroup of contractions, then AS in acoretiV@.

• .': . ...
a *do ".

If x x - ; and v-Ax- and w 0, then (1.1) can be written as

:]0 -C (s , ) X f o r X > 0 h r e I ' I - I
I: + Xvl -lal . i

1.2) (a,I -]

defines [s,w1) for X 0 0. Since X * Is + Xwv is a convex function of X we may define

(1.3) (z,w] 11. E[,vw)]- inf - _,w.
+o X>o - +.-

and then observe that an operator A:D(A) C X 4 I is accretive if and only if

(1.4) 0 4 Ix - x, Ax - ] for x, ; 6 D(A).

Let us list som properties of the bracket E I before continuing. One further

concept, namely that of the "duality map" JIX + X* is required. It is given by

(1.5) J(x) x X: x (x) - II and ,xI , 1

where x (x) denotes the value of x* 6 X* at x 6 X. For example, J(0) is the closed

unit ball in X"-

Proposition 1. Let x,y,z 6 X and a,$ a It. We have.

(ML) ( , ]:XxX + R is upper-senicontinuus.

(ii) [ox,ByI - I51 Ex,y] if CO > 0.

(iii) [xmCD + y] - nIxI + x,y].

(iv) I(x,yjj 4 lyl and 10,y] - lyl.

cv) -Cx,-yj C Ix,y].

(vi) ,,y + , , tx,y, + Ix-:.]

(vii) Ix,y) - [x,aII 4 ly - Zl.

(ix) (x,y) - maxx*(y): x* J J(x)}. b
Let us consider still another way to say that A + ol is accretive. If we put

s - x + a - x + UA in 1.1). Then, formally, x - (I + )A)- a and

x - (I + A )'z and (1.1) may be reformulated as

1.6) II+XlA)- z ) ia -zl for z, a 6 R(I+X),

%- %,, %..
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from which we see that (I + ).A)- is indeed a function with (I - 1 as a Lipschitz

constant if Xw < 1. Just as f-1 need not be a function if f is, A need not be a

function in order that (1.6) hold, and we will continue the discussion in the

multivalued generality that this suggests.

More precisely, we will call a mapping A:X + 2X (the subsets of X) an "operator"

in X. Functions with domain and range in X are identified with the corresponding

single-valued operators, where a single-valued operator A is one whose values Ax are

either singletons or the empty set. The effective domain D(A of an operator A is

D(A) x e1: Ax is not emptyj.

If A is a single-valued operator (or the corresponding function) and x 6 D(A, we will

use Ax, depending on the context, to denote either the singleton set or its

corresponding element. If A and B are operators and x e R then we form new operators

SA-', )LA, and A + B in the expected ways. For example,

A_1 x - {y e6X: ye MI}.

We formulate the notion of accretiveness for operators. The equivalence of the

four conditions given is clear from the above.

Definition 1. If A is an operator in X and W e R, then A + akl is accretIve (or, for

short, A e A(w)) if the following equivalent conditions hold:

(i) (0 - A)Ix - x ix -x+ x(y - y)i for y e m, y e Ax and X 0.

ii) [x - x.y - y] > -Wx - ;I for y 6 Ax and ; 6 Ax.

(iii) If y 9 Ax and y e Ax, then there is an x* e J(x-x) such that

x (y - y) - Ix - xl.

(iv) If ) > 0 and Xw < 1, then (I + A -1 is single-valued and has

(0 - )W- 1 as a Lipschitz constant.

In practice, it is usually (ii) which is used to verify accretiveness. We

complete this section by recalling the notion of a strong solution of the inclusion

(DR)f u'it) + Au(t) -D f(t) -

in which A is an operator in X and f: [0,T] + X is Bochner integrable with respect to

'..~.. •
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Lebe s measure (that is f 6 LI(O,T:X)). The space w1'1 (OTsX) consists of those .

functions u which have the form

t
(1.7) u(t) - u(O) + j h(s)ds

0 S.-'

00*

for sm h 9 LI(0,TtX). It is well-known that wl'
1(0,TX) consists of exactly those

absolutely continuous functions u: (0,?] + X which are differentiable &a. on (0,T) and

that when (1.7) holds with h 6 LI(0,TsX), then u'(t) - h(t) a.e.. Moreover, if X is

reflexive then every absolutely continuous u:(0,T] + X belongs to W1'1 (O,:X), while

there are spaces X and absolutely continuous function. u which are nowhere

differentiable.

Definition 2. A strong solution of (DZ)f on (0,T] is a u 6 wl'I(O,?aX) such that

f(t) - u(t) 6 Aut) almost everywhere on 10,T).

As a smple exercise in the concepts we have introduced so far. let us prove that

if A + ,l is accretive, then strong solutions of (DR)f are determined by their initial-

values. more precisely-

Proposition . Let f, f 6 L(0,TX), A A(W) and u, ube strong solutions of

u, + Au B , u' + A D f, respectively, an (0,T]. _ten

-a t ati )tll "a%"!
t-a

Iu(t)-ut)I C e6*1(0)- (0)+ l (u(a s),f(a)-f(,)]d (
0(1.6)"

0 t"-c e Iu(O)u(O)I JJ(e + 0 aevt-a)+ IfJ(s)-f(sl i) Ida"". "+ '. ' ""; :

0

Proof. Let ft (0,T] x be differentiable from the right at a U 10,T). Then for h > 0

If(@) + WW~sI - MIf~)IMes + h)1 - Ifts)- R ) + o 0).

h h

- ( (i),t (l).. ho(1

where Weit) denotes the right derivative of f at a. Upon letting h+O we find

that If(t)I has a right derivative at t - a nd
(1.g) ~DRIV0tllt.iI- I(s),fil], ")

where Dt denotes the right derivative. Similarly,

-7-"
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11.10) DL*fltlte - -[fl), -fife)]
L t-sL

and we conclude that if both f and If(t)I are differentiable at t - a, then p
(1.11) If(t)It = f(s),f'()] -- [ffe),-f(s)].

If u and u are absolutely continuous, then so is g(t) - lu(t) uft)I, which is

therefore differentiable a.e.. If u and u are as in the proposition then u, u and g

are all differentiable at almost every t and, by the above, for such values of t we

have

d
--Rut) - u(t)U - -u(t) - u(t), u'(t) - u'(t)] -dt "

-[u.t) - u(t),(f(t) - u'(t)) - (fit) - u'(t)) + fft) - f(t))J.

Since u and u are strong solutions of their respective equations, we have

f(t) - u'(t) e Au(t) and f(t) - u'(t) e Au(t) a.e.. At such points t, by

Proposition I (vi) and Definition 1(ii),

tu(t) - u(t),(f(t) - u,(t)) - ;(t) - u,(t)) + (;(t) - f(t))]

(u(t) u(t),(f(t) - u'(t)) - (f(t) - u'(t))] - tu(t) - u(t),f(t) - f(t)]

-Wiu(t) - u(t)l - [u(t) - u(t),f(t) ;(t)]

We conclude that g(t) - lult) - u(t)I satisfies

g'(t) 4 wg(t) + Cu(t) - u(t),f(t) - i(t)]

and the integration of this elementary inequality yields the first inequality of

(1.8). The final inequality of (1.8) comes from Proposition 1(iv).

In particular, if the assumptions of Proposition 2 hold and f -

u(0) - u(0), then u U and strong solutions of the initial-value problem are unique.

Even more, they depend continuously on initial data and the forcing term f according to

the estimate (1.8). If f - f, the estimate of (1.8) amounts to the same

quasicontractive estimate from which we motivated the condition "A + WI" is accretive,

and the circle is complete.

However, it is an unpleasant but very interesting fact that we cannot think only

of strong solutions. Indeed, we will have to travel rather far from this notion to

2.
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accmmodate the full range of phenomena in this subject. In particular, there is an

ample of a quasicontractive semigroup S on X - C(tO,I]) such that St)x is not '7!

differentiable for any 0 4 t or x 6 X and there are natural accrotive operators A

arising in partial differential equations for which the problem (DU~f with f - 0 has no
'....-.

+
...

strong solution. on tO,"), a phenomnon which corresponds to the developaent of

"shocks* - that is, discontinuitien develop in the solution or its derivatives in such

a way as to render it subtle to well - pose the corresponding problem. We take up

another, broader, notion of 0solution" In the next section.

Section 2. Mild Solutions.

Let us motivate the notion to be introduced the following way. The existence

question for the classical Cauchy problem

dutM + Au(t) - f(t)

(Cp)
u(0) x,

where A is a continuous function in ame R- X is often approached via the method of

OIulor linesu. Now, this just amounts to solving (which is trivial matter when it is

possible - so below) the explicit difference approximation
* ..

S u i ) * (+i-1)A) - f((i-1)X),

(2.1)

u X(O) X

for the nodal values ux(4A) of the approximation uk, interpolating them linearly, and

then studying the (subeequential) convergence of uk to a solution u. Of course, if

linear interpolation produces approximate solutions uk which converge uniforaly to a

continuously differentiable solution, so will piecewise constant interpolation. Now
,, %

the scheme (2.1) is often not a good one if A is a partial differential operator, since

the formal solution of (2.1) is, in the case f - 0, .

uA(,) a (I - .)u,((i-)) - (I - )ux(o) - (I - ) ix

and one is applying high powers (I- kh)i of a differential operator to a fixed x, and

-9-
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this is a bad idea in general. On the other hand, if we replace (2.1) by

C 12.21 u)(iA) - u M(il-)A)
(2.2) A A + Au(i X) = f(iA)

and f - 0 we formally have

' u)(i),) = (X I + W )-uX((i-1) A) '-

p
or

.i(2.3) uA(iA) - '".:

where

(2.4) J). (I + A 1

Now, provided the inverses have an adequately large domain, this procedure is well

defined and proceeds by applying powers of the inverses, which have a better chance of

behaving well. The method (2.2) is called "implicit Ruler". One is naturally led to

consider the idea of accretive operators when approaching things from this point of

view, since the method (2.3) has a better chance of success if the operators are

equicontinuous for iX bounded. About the only way to guarantee something like this is

to ask each factor JX to have a Lipschitz constant KA, and then has as a

Lipschitz constant. If - 1 - AX)- , then KAi , e"t as i) + t and i + -. Moreover,

o is naturally led to place conditions on the domain of the re-olvents X* The best

thing is to have them defined everywhere (at least for small A).

Definition 3. Let A e A(n). Then A + wl is m-accretive if R(I + )A) X I for A > 0 and<L

The condition of m-accretivity is enjoyed by many important operators in

applications. The simplest example of an A such that A + Wl is m-accretive is a

Lipschitz continuous function A on all of X which has w as a Lipschitz constant. Also

every continuous function A on X which is accretive is m-accretive (although this is

not so easy to prove). However, examples from differential equations will not be

continuous and will typically have small domains.

-10-%
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With this prologue, we will adopt below a notion of solution which refers directly

to the approximation method used to prove the existence of solutions, the implicit

Euler method. There is ample evidence that this is a reasonable thing to do. It

provides a great unity to the spectrum of examples developed over the last decade or so

and we can speak of "mild solutions" of very different problem. On the abstract side,

we find it a completely adequate notion for discussing (DE)f and the basic existence

theory and generation theory involving accretive operators which has been developed.

It has shortcomings when one attempts to deal with generalizations of (DE)f, which we

call a "quasiautonomous equation", to more general time dependencies, e.g. "

u' + A(tu = 0, as will be mentioned later.

We now define the notion. For a while, there will be no restrictions of

accretiveness imposed and the discussion is completely general in this respect. In

order to accomodate the natural generality f e LI(O,T:X) and other results discussed

later, we will need more general approximations than (2.3) - in particular, we will

want to refer to variable meshes rather that the constant step size X above.

Let f S L1(O,T:X) and c ), 0. An C-discretization on [0,T) of u' + Au Df on [0,T]

consists of a partition t0 - t o C t 1 4 t 2 f .. -C tN of the interval EO,tN] and a
a~. .. -

finite sequence if 1, f 2 ' .... I f NJ C X such that '.
'...

(a) ti -ti < for i ...... N and T -e< 4 T,

(2.5) and

i ti(b) ) IfWl f Inds < e.

The inequalities (2.5) (a) require that the step sizes of the partition not exceed c

and the end point t. C T not miss T by more than e. The inequality (b) requires that

the forcing term f be approximated within e in L
1 

(O,tN:X) by the piecewise constant

function whose value on (ti_1,til is fi" These data do not refer to the operator A

occurring in the equation. We will indicate it by writing DAC0 to,t1,..,tN:f,..,f N )

for the discretization.

-11- ..
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A solution of a discretization DA(O-tO,tl,..,tN:fl,..,fH) is a piecewise constant

function v:(O,tN] X whose values vi on (ti.l,til satisfy

(2.6) " + Av B f for i- ..... N.
ti i i i

The value v 0 - v(0) is not otherwise restricted. An C-approximate solution of an

inclusion u' + Au 3 f is a solution v of an c-discretization DA(O-t 0 .. *tN:fl,...fN).-

Definition 4. Let A be an operator in X, T > 0, and f e L
1

(0,TsX). Then a mild

solution of u' + Au 3 f on [0,T] is a u e C[0,T:X] (the continuous functions from [0,T]"

into X) with the property that for each c > 0 there is an c-approximate solution v of

u' + Au 3 f on [0,T] such that Iv(t) - u(t)l 4 C for t in the domain of v.

Less formally, mild solutions are the continuous uniform limits of approximate

solutions. We reiterate that while this notion is just broad enough to provide an

adequate extension of the class of strong solutions for our purposes, ild solutions

represent a very considerable generalization the strong notion.

Let us mention that while we have treated the endpoints 0 and T of the interval

[0,T] assymetrically in our definition of c-discretizations and C-approximate

solutions, this difference disappears at the level of mild solutions (although this

requires an argument). That is, the class of mild solutions is unchanged if one

requires only 0 C t0 4 e in the definition of an C-discretization and makes the obvious

subsequent modifications. We do not know if the class of mild solutions is left

unchanged in general if we require both to- 0 and tN T. Without further ado, if

a < b and f e LI(a,b:X) then one defines strong solutions on [a,b], e-discretizations

of u' + Au 3 f on Ia,b] and mild solutions on [a,b in the obvious way. If Q is an

arbitrary interval and f e L, (Q:X) a mild (strong) solution of u' + Au 9 f on Q is a

u e c[Q:xj which is a mild (respectively, strong) solution on every compact subinterval
.-,%

of Q (and this is consistent with the original definitions, as must be checked).

The next result collects a variety of properties of mild solutions of differential

equations.

-12-,
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Proposition 3. (Properties of mild solutions.) Let A be an operator in X,

Q an interval in R, and f e Lo, (Q:X).

i) If u is a strong solution of u' + Au - f on Q, then u is a mild

solution of u' + Au 9 f on Q.

(ii) If u is a mild solution of u' + Au D f on Q, then u(Q) C (A) (the closure

of D(A)).

(iii) Lot Q - 1O,T] and u be a mild solution of u' + Au -D f on [0,T]. If

D(A) is closed and A is single-valued and continuous, then

t t

u(t) u(0) j Au(s)ds + J fi)ds for 0 4 t 4 T.
0 0

In particular, u is a strong solution and it is a classical solution if f

is continuous.

(iv) (Continuation property). Lrot 9 -1UJ2 where Qi is a subinterval of

9. If ua 8 C(QtX) in a mild solution of u' + Au 3'f on each Qi, then it

is a mild solution on Q.

v) (Closure property). Let fn 6 LIo (Q$X)g un a C(Q:X), and un be a mild

solution of u + Aun D f n for n - 1,2,.... .. If fn converges to f in L

and un converges to u uniformly on compact subsets of Q as n * , then ...

u is a mild solution of u' + Au 3 f on ' Q.

(vi) (Translation property). Let u be a mild solution of u' + Au 3 f on Q

and h e it. Then v(t) - u(t + h) is a mild solution of v' + Av 9 g on

Q - h where g(t) - f(t + h).

(vii) (Perturbation property). Let p be a continuous mapping of D(A) into

X. Then u is a mild solution of u' + Au + p(u) -D f on Q if and only if

u 0 C(Qt:X), u has its values in D(A), and u is a mild solution of

u + Au 3 g on Q, where g(t) = f(t) - p(u(t)).

-13-
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Au the reader can sa, many of the usual properties we associate with the

solutions of ordinary differential equations remain true in the context of mild

aolutions, a comforting fact. one of the things we can do with the notion of a mild

solution is define a aemigroup from an arbitrary operator A. Indeed, given an operator

A in X, put %A.

DA - Ix 0 Xt U' + Au 3 0, uCO) -x# has a unique mild solution on (0,u')l

and define SA(t)tDk X by

(2.7) SA(t)x-u(t) where u is the mild solution of u'+Au j) 0, uCO) - x.

Proposition 4. Let A be an operator in X. Then SA is a aemigroup, on DA.

We will call S. the asemigroup generated by - Aw.

Section 3. Convergence of Approximate Solutions

In this section we outline the main facts concerning the existence of mild i
aolutions of the initial-value problem

u 3ft)
+d uft)

(IVP)xf u0

where A + wl is accretive and f 6 LI(O,TtX). Consider a diacretization

OA(OtOt,..,t:f ,..,f1) of U' + An 3 f. The nodal values vi -v(ti) of a aolution v

of this diacretization satisfy

vi -
(3.1) + i Av, a f, for il,.

ti t i-1  i

or, equivalently,

(3.2) vi 8(vi +85 f for i-1,.. .,N, where 6iit 1 and J -(I+A.A) ,

i

and we are asauming that JAis a function in the range of A~ where we use it. If A + (a

ia accretive, then this ia the case in (3.2) provided that 6iw < I for i .1,..,N. If

-14-
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A + wX is also m-accretive, then the domain of Jx is all of X for ko < 1, and (3.2)

uniquely determines the vi for any choice of the discretixation DN(OtO,.., t Naf,.. , fW)

of small mesh and intial-value v0 of v. Thus for a large and interesting class of

operators A, every discretisation of mall mesh of ul + Au is uniquely solvable

once the intial-value of the solution is specified. This adds interest to the next

theorem. In the theorem, an e-approximate solution of (IVP)xf on [O,T] mans an a- -

approximate solution of u' + Au D f on (0,T) which further satisfies

* (3. 30wjO) - x1 < a. Theorem . (Convrgence)Let+albaccretive,x~t1

closure of D(A)), and f 6 L
1

(O,TtX). For each a > 0 let (!WP)xf have an a-approximate

solution on [0,T]. Then the problem (!VP)x,f has a unique mild solution u. Moreover,

there is a function K(C) such that (O+) - 0 and if v is an a-approximate solution of

(IVP)xf then

Iu(t)-v(t)l 4 K(C) for 0 4 t 4 T - a.

The convergence theorem asserts that if v-approximate solutions exist for each 9,

" then they converge as e + 0 to a mild solution u and the difference between u and any

c-approximate solution in estimable in terms of t. The estimate K will depend on T, it,

the behaviour of A near x (or simply lyl for y O Ax if x 6 D(A)) end the modulus of

continuity of f in L' with respect to translations. In particular, if A + WX is

m-accretive, and f 6 LI(o,TX), then (ZVP)xf hae a unique mild solution for every

x 6 D(A).

We will not give the details of the proof of the Convergence Theorem, but we will

outline a simple and interesting attack which gives much more information than claimed

"" so far.

First Step. Let v be a solution of a discretixation DA(O-so,h1,..,sMf1,..,fM) and w 9

be a solution of a discretization UAlO-to,t1,,,,t :g1,, with nodal values vi and

* wj respectively. Put

a v I w 
'-t 

t J1.

* Then

-15-
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I.:(3.4) a -C ) + + 'I i-9 1  .

i+6 L,: Y +Gj i-,J Y +6 + iJ-' -+6- j

for I < i <CN, I C j -C ( . Moreover, for any x e DA) and y Ax.

±

a I( loxU+Iv -xI+ fr0i
10 * 1 1v2 i~kkIkIII fo 4

(3.5) and

aoj 0 6'I OW o-xl+lvo-Xt+ k.1 0Jk (Ug + y1) for OCJ<I,

where

±
(3.6) *i,k -1 0 (1 .) "  and ,k - a (1-G)"

. -
m-,k m-k

The inequalities (3.4) and (3.5) are elementary consequences of the assumptions.

The proof of the Convergence Theorem then reduces to estimating solutions of (3.4) and

(3.5). One way to recognize the behaviour of solutions of these inequalities is

outlined next.

. Second Step. Consider real-valued functions $(*,T), (p(s,r) of two real variables a, -r

which are related by the differential equation

(3.7) ((st)+4?(sp)-w*(sT) - p(s,T) for OcJ4T andOTM.

Let us introduce a grid

(3.8) A- {(si,tj): 0-0 o... . s cT0-t0....Cta}

and approximate (3.7) on this grid by the difference relation.

(3.9) ,+ "' -1, + 4 for - . J-,..,4,
Yi ifi ii

where Y- = - s1-1 and 8- tj -t 1 . When (3.9) is solved for Tij (given the

values Ti,j for i - 0 or j -0) we might hope Ivi - *(siTj)I is small when it is

small on the "boundary" i - 0 or J - 0, the mesh maxlYi, ,j is small, and the values

1i,j approximate 9 on (hi_ 1,si]x(Tj-l_1Tj] in some good way. Now (3.9) become, upon

rearranging, r

(3.10) (0-)Yi + Y, Y i
+ J Y- + ±ij Y .T"-

-16-
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and the relationship with (3.5) becomes apparent. The terms corresponding to fi,, in

(3.4) are Ifi - wjI vhere the fi and gj are nodal values of piecewise constant

approimations of functions f, g • .(O,T:X). It is not exactly clear how such ," -

approximate this (p, 1ut they do so in the sense required to apply the convergence

result described next.

Let b e C( (-T,S]). The integration of (3.6) subject to the boundary condition

- b(&-r) if a - 0 or T - 0 leads to the following formula* for - G(b,-)s

"a b(s-T) + j e( 9(s-T+a, )da for 0TrsUCT,

(3.111 b,

-,Nb(s-r) + J es( ,Q ,r., -s+a)d* for 0. (T4T.

0

In what follows (0 is such that G(b,p) is well defined and continuous.

We want to discuss a solution operator for the corresponding discrete problem and

begin by introducing the norm in which approximation of P will be required. To this

end, if 0- [0,Sx[0,T] and tP:[0,Sx[0,T) + pnput

(3.12) 1,1inf{-f 1 +,g, %Jl(s,T)Jf IJf(.)J+Ig(r) a.e. on 0),

L (0,S) L (o,T)

where it is understood that the inf of the empty set is - . ext, if A is the grid

(3.8), put

O(A) - [OI*JX(OtNI] I-"-..

Let

S: -t, 14 ]  R and 0:fl(A) + R

be piecewise constant on A, i.e. there are constants B , j , fi,J such that B(0) -11 0

and

3(r) = Bi, j for 1 = 0 and -tj 4 r < -tj. or j 0 and si. 1 < r 4 s i ,

* and

*(s,T) - Oi,j for (sT) e (Si.ISix(Tj.I,Tj].

-17- il
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If the mash m(A) - m jlySj Of A satisfies M(A)w < lo the equations (3.9) are

obviously uniquely solvable for Vi' given that

(3.13) a for £ - 0 or,- 0.

Let Y - NAU&,O) denote the piecewise constant function on A obtained by solving (3.9)

subject to (3.13).

Theorem 2. Let b U C( (-T,)81 and 4p: [0,T]xC0,T)] 3L Then

IG(b.9)-K (310I 1 - 0 as n(A)+Eb-BI +*'-*"(1 0.

There is a lot packed Into this result, and we have formulated it in a sort of

sneaky way. In particular, no assumptions were made on * in the theorem. This was

possible, because the result asserts nothing unless we can approximate 0 with piecewise

constant functions in the norms (3.12), and not every function can be so approximated.

In particular, not every bounded and measurable function on [0,8]x(O,T] can be so

approximated. However, functions of the form If(s) - g(T)I with integrable f and g

can.

Let us sketch the application of Theorem 2 to Theorem 1. Let

f, g 6 LI(0,TaX), x 0 , x 0 6 D(A). v be an c-approximate solution of

(3.14) ul' + Au f, u(O) 3.,

and w be an s-approximate solution of %

ul + Au B g, u(O) - 0

and the discretizations solved by v and w be the ones in the first step. The piecewise

constant function 9 on (1-tsM] whose values *i,j for i - 0 or j = 0 are the right hand

sides of (3.S) tends, as e O, uniformly to the function

b(s) =ae Ix0-xl + Jeal(s' if(a)a+yl)da + Ix-x0 1 for O(s(T,
0

(3.15)"":-

b(-T) ee IXl-xl + s (Ig() +Iyl)da + Ix-x for OCT(T.o 4'"*

To prove this one uses the fact that the functions whose nodal values are the fi and 9j

V. %

o'o .%
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differ from f and g in L1 by at most c and elementary estimates. Moreover, if

- If()-g(T)I and * is the piecewise constant function on A given by

"£ej if-9 , then

" (3.16) No - # 2e.: " tmQA)

Finally, since the el, j satisfy the inequalities (3.5) and (3.61 they mny be

* estimated above by the solution YT,j - U(BD#)i,j of the corresponding equalities.

Recalling the meaning of the a1 , and Theorem 2 we conclude that for any n > 0

(3.17) Iv(s) - v()I 4 G(b,op)Cs,r) + n

as soon as e is small enough.

We use (3.17) in three situations. If f - g, x 0 - 0 , and a - - t, we compute

G(b.9)t,t) 21xo-xI and conclude that

Iv(t) - withl 4 21x - xl + v,
0

as soon as C is small. Since x0 it(A) and x S D(A) is arbitrary, this verifies the

', Cauchy criterion for the net of c-approximate solutions of (3.14). Let u be the limit

* of the a-approximate solutions of (3.14) as c + 0. Now we take the limit in (3.17)

Swit t + h. f mg and x0  x to conclude that

Iu(t+h) - u(t)I 4 G(bttp)(t+h,t) a wt(Ce + 1)ix0- xl +

* (3.18)
h t

+ j e ha fl)I + lyl)d,) + j ewt ctf h) - f(l)1da,
0 0

for every y 0 Ax and x 6 D(A). It follows easily that u is continuous. In a similar

way, (3.15) in the general case implies that if u and u are mild solutions of problems

u' +&Au f andu' +AuDf, then
(3.19) Suit) - ;(tii ,*Iu(t ) - t(0)i + Jte(t-'aIf () - i(,. i '-

0
(The change in notation was made because we ran out of suitable letters.) The

* inequality (3.19) reproduces the extreme inequalities of (1.8) for mild solutions.

Given the convergence, Theorem 2 also quickly implies the validity of the next ' .

proposition.
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Proposition S. Let A + W be accretive, f, f a L1 (0,Tsx) and a, u be mil solutione of

uI+ Auf and' + Afar epectivly. Then

(- t (t- T) a

(3.20) *uMt-uWtI 4 ( I~M-(tG)5 1 5 , 0 5 U -(['

for Otft<.

The convergence theorem does not address the question of when approx ate

solutions exist. Let us point out a couple of simple situations when this in not a

problem. Recall that if A + 4a is -accretive, then every discretisation

" DA(- t,tl..,tlhsf,..,f) of small msh is uniquely solvable when an initial value is

specified. We sunmarise the situation as regards the case In which A + of is

m-accretive.

Theorem 3. Let A + a! be m-accretive, x 6 D(A) and f 6 LI(0.,TX). Then
u' + Au f, u(0) = x has a unique mild solution on 10,T]. Moreover, if u and u are#

respectively, mild solutions of u' + Au f and u' + A ) f on 10,T), then (3.20)

holds.

Another simple situation arises when considering the problem

(3.21) U' + Au 0 , U10) - X.

I We know that the solution ux of the discretixation DA(,X,2X,..,NX0.... 0) which

satisfies u,(O) - x (if it exists) is given by u () -Jx (see (i.3) an (2.4)).

Thus if A 6 J(l) and

(3.22) R(U + )+A) )D(A) for small X > 0,

then (3.21) has a mild solution u for every x 6 D(A). Moreover, u is given by

(3.23) 1 x u(t) as X 0 and i t.

When A 6 AW) satisfies (3.22), then its closure satisfies the stronger condition

(3.24) RI + A) DD(A) for small A > 0,

and (3.21) is solvable for x S E(A) and (3.23) still holds. In particular, if the

range condition (3.24) holds, we have the exponential formula %
(3.25) 8A(,)x - lim (I + (t/n))'nx-

n43.

for the semigroup generated by -A on (A).
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Section 4. A Quasilinear Uquation

In this section we sketch an application of the results of Section 3 to a Cover

simplified) quasilinear problem related to those previously considered by Kato. This

section, while self-contained, is primarily intended for readers with some knowledge of

Kato's theory. It demonstrates a strong relationship between his existence results and

the results we have sketched so far.

Here X and Y denote reflexive Banach spaces with Y densely and continuously

imbedded in X. The norm of X and Y are denoted by

I I and I IY respectively. The problem of interest has the form

(4.1) u' + B(u)u - 0, uO) -

in which D(u) is a linear operator in X for each suitable u. We detail properties of B

shortly, but first we mst introduce a little notation. .7

In what follows linear operators ore single-valued. If C:D(C) C X * X is a linear

operator, Cy, the part of C in Y, is the restriction of C to jy 0 D(C)tly Cy e Y}. f

Z is a Bnach space and C is a densely defined linear operator in Z such that C + MI is

n-acreative we write C S N(*,Z). The Hille-Yosida theorm (which we will not use)

implies that C 6 N(u,Z) exactly when -C in the infinitesimal generator of a continuous

semigroup e of linear operators which satisfies Ie l ( e"z
In the assumptions below r >0, w0 6 Y and

w - ly eY: ly - w0 1 Y r

is the closed r-ball centered at w0 in Y. We assume that:

(31) There is a 6e 6R and for each w 6 V an operator 3(w) 6 N(O,X) such

that 0(3(w)) D Y and D(w)y e (e,Y). ,.

(32) There are L, y > 0 such that for w, w 6 W and y 6 Y

IB(w) - (w))yI 4 LIw - wI1 yl and IS(w)y1 ( Yyl

(83) There is a u > 0 such that if w V W then 3(w)w0 e Y and

orrIB(w)WoI 0 1 ,.is

-21-
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in Usato's theory, (31) is doducible from nor* subtle assumtions involving a

linear isomorphism eaY + X and conditions an 3(w) and the comtators 85(w) - (w)S.

Let a try to solve (4.1) via the discretisation %

i i-i i14 i .

1 3(xii~x,- 0, --o1

(4.2)

Asse that o 0 and (4.2) is solvable for each small A p 0 for xi0 V for

I 0,1,...N whore T 4)VA. Thenu pt

i11(t) xi for (i-I)l < t C iA, i

(4.3)

and ux(O)

We claim that then uA converges strongly in X and weakly in Y uniformly on 10,T)

to function us [0,TI + V which is Lipechitz continuous into X and weakly continuous into

Y. Moreover, u is weakly continuously differentiable into K and satisfies u' (t) +

S(ut))Mt - 0 for 0 4 t 4 T. in particular, it is a strong solution of ul + A(u) -0

where AM) - 3(u)u. Wie sketch the proof of these claim and then the proof that (4.3)

to solvable.

For each onall A )P 0, let (4.2) be satisfied, T 4 VA, xi O W, and uX he given by

(4.3). Then, by (32) ad xi 0

(4.4) Ix I- i-I I x -nD42 IBi )xoli Io 1YIX I I Y h AY(r + 1W 0 1 )

UNw put

(4.5) 1x) -(x)x for x 6 D(A) .

Clearly a), Is a solution of the discretization D(0,,.dA .. ... g~ Of

U' 4 Au,. 0 where

(4.6) -i - (Dcxi) - ((xi.1))xi.

Using (4.4) and (32) again, we see that the errors" i satisfy
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and tu .stend to zero in " and. fortori in . .. inalyw chock t :

A + Wi is accretive in X where w -8+ L(r + 1W0 ly). Indeed, by (31) and (32), if

x xand eD(A) - V

|x- lx(A(l)-A(x)) I, *x- x l(X)(x-;)+XIB(x)-B(x))x l ;Px x

(4.7) )lx-x+AB(x)(x-x)l" X(B(X)'B(X))Xl x('l e)IXXIx- LX-x'1 xI N ,

0( - (e + L(r + lwoIy))Ix - x1 ,
0 

0o'X1

and the claim is proved. The convergence of uX in X uniformly in t to a continuous

limit u now follows from the results described in Section 3. Since each ux takes

values in W, which is weakly closed in Y, and convergence in X boundedly in Y implies

weak convergence in Y by the assumptions on X and Y, the convergence claims are

established. Clearly u(t) is weakly continuous into Y and Blu(t))u(t) is weakly

continuous into X. Moreover, it is easy to pass to the weak (in X) limit as X +0 and

J1 t in the relation

u (X) - 9 + J B(us - Mu sd,

which follows from suming (4.2) from i 1 to J, to find

t
u(t) - 9 + J B(u(s))u(s)ds,

0

which proves the claims about u being a weakly continuously differentiable strong

* solution of (4.1).

It remains to discuss the solvability of (4.2). Dy the assumption (B1), if A > 0

and A6 < 1, then given xi.1 0 W and any z in X we can uniquely solve

(4.8) x + As(xi. 1 )x z z

for x - (I + a.S(xi_1 )) ' 1z and x 6 Y if z 6 Y and

J-1 -1
(4.9) 1(1 1B(xi 1)'I) ( (1 - 1) "  for Z-Xor Z-Y. " * -

Hence, so long as we keep xil in W we can compute xi in Y. We estimate the range of i

for which this is possible. Without loss of generality assume 0 4 8. We will keep
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AO < 1/2 so that

(1 - Ae) "I  •2A e6"."

By (4.9) and (B3), so long as x_ 1 6 We

lx£ -OIy C (1 - AS)'l .. oL(Bx )t. x£1Vl-. "'..
I -O x) lxi-w0 1A((x 1 1I)x±-B(X± 1J)wOlI- .

4 0 el '(Ix-" w 0 1+:1)

C (I- )O Y (Ixi+ wol + XP).

Using the above inequalities and x= -9. one finds easily thatZ
! IxL- wOI 1C e2' If# - wOI Y + ik UI, ":

1 0 Y (I- 0l iY a

s o w e c o n c l u d e t h a t i f 0 2 T X B ( 4 T + A 1 C rS - WoIyr+ 15 u))(

0 Y.

which will hold for A andT smll enough provided that 0 lie. in the interior of W" ,

then (4.2) in solvable for xi 6 W when T 4 NA T + X, completing the discussion.

section S. Generation Theorems and obayaeshi' Existence Criterion.

Zn this section we introduce results of two kinds. On the one hand, if we are

given a mapping from data (x,f) with the properties expected of the solution operator %.

of the problem

(I P)x,f u' + Au a f, u(O) - x,

when A + oX is accretive, we ask if that mapping indeed arises from an A in this way -

this is generation theory in the spirit of the first section. Secondly, we will

discuss more refined questions concerning the solvability of (ZVP)x, 0 than have been

posed so far.

To begin, let us recall that if A + wX were -accretive, f e L1  
(10-):X) and x 6

loc
D(A), then (IVP)x f would have a unique mild solution u 0 C([0,m:X) which we will

denote by u - E(x,f). Moreover, RA would enjoy certain properties which we now
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abstract. Let K be a closed and nonempty subset of X, L be a translation invariant

subspace of Lloc([0,.)tX) and consider the following properties of a mapping

: 3KxL + C [0, )X):

(31) For x 6 K and f 6 L, Z(x,f)(0) - x and 3(x,f)(t) 6 K for 0 4 t.

(M2) Z is translation invariant in the sense that

3(x,f)(t+f) - Z(Z(xf)(r),f(.+T))(t) for x e K, f 6 L and 0 4 t, T.

* (33) If x, xe K, f, e L and u (,f), u - (x,f), then .
atemlt-) a.''k

"u(t)-u(t) e Ius0u(O)I+) a [u(T)-u(T),f(T)-f(r)j d. .
0

for 0 4 t.

For example, if t - 0 and L - 101, then (31)-(93) reduce to the requirement that

S(t)x - 3(x,0)(t) defines a nonexpansive s-migroup an K. Neft we list sam results

which, under various circumstances, represent operators 3 satisfying (91)-(93) as

arising from solving an initial-value problem (IVP)x,f with A + at accretive. In the

first result we see that if L is large enough, then the situation is rather nice.

(i) Let (21)-(23) hold and L contain all the onstant functions. Then there is a

unique A such that A + ol is m-accretive and 3 is the restriction of to K)•

moreover, D(A) K.

It is also easy to see that the mapping A % 3A is one-to-one on

IAs A + 0l is mt-accretivel

(essentially because y 6 Ax is equivalent to the constant function x being a solution

of u' + Au D y when A + Z is m-accretive). when L - Llo (10,-)X) this provides us " 4-

3~ whn A l is Whe - -loc'

with a biunique correspondence between mappings X with the properties (21)-(33) and
operators A with A + wl m-accrstivet this is a perfect result. The situation in the

semigroup case, that is L - 101, is considerably more complicated and there remain
%..' ,%.

interesting unsolved problems. We will restrict our attention to the case w - 0, but ... I
all the results below remain valid in the general. We begin with the compact case.

(ii) If S is a nonexpansive semigroup on a closed convex set K in X and K is locally

compact, then there is an accretive operator A in X with D(A) - K,

-25-
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and 8 8 S, (equivalently, 8 is obtained from A via the exponential formula).* In

particular, if X - P is finite dimensional, then every nonexpansive semigroup on a

closed convex set &rise* in this way. However, even if X z2 with the maximum norm,

there are distinct m-accretive operators A and 3 with domains all of X for which

SA -HS5

The next results do not require compactness but restrict the geometry of X

instead. In the event that I - 8 is a Hilbert space, the notion of an scretive

operator coincides with another notion, that of a monotone operator. Moreover, it is

known that an operator Is m-accretive if and only if it is secretive and not a proper

restriction of another acretive operator -I.e., if it is maximal acaretive

(equivalently, maximal monotone).* This is the origin of the wa-" in m-accretive.

(iii) If - Nis a ilbert pace, I is aclosed andoconvex subset ofIand0insa

nonexpansive semigroup on K, then there is a unique m-accretive operator A in X such

that 8 - 8,, and D(A - K. Moreover, this correspondence is biunique, the infinitesimal

generator of SA is -A0 where A0 is the minimal section of A. That Is, for x 6 D(A, Ax

is a closed convex set and Ox is the projection of 0 on this set (its element of least

norm).

The results above provide a perfect generation theorem for nonexpaneive semigroupe

in Hilbert spaces which is really quite rich in structure. moreover, it is nontrivial

even in the case z - al A generalization of (iii) holds which places less severe

gemtrical restrictions on X, but more on K.

(iv) If the norm of I is uniformly Gateaux differentiable and the norm of X is Frechet

differentiable, then the relation 8 - SA establishes a biunique correspondence between

nonexpansive semigroupe on closed convex nonexpensive retracts of I and m-accretive

operators.

-26-
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We will defer further remark* in this vein to the comments section. For now we

content ourself with the final remark that it is still an unsolved problem to determine

whether or not an arbitrary nonexpansive semigroup S on a convex K can be represented

in the form S - A for an accretive A. It em likely that if this is to be proved

not true, then this will be done by presenting a nonexpansive semigroup 8 on a closed

convex met K such that ie(t)x-xi/t 4-as t + + or every x 0 K. If this is to be

proved true, it will likely involve mome totally new arguments - a statement which -.- *.

leads us to a few coments on the arguments used to prove (i) - Civ).

in order to prove Ci), one proceeds according to the following idea. Assuming LA.,

that 3 is indeed of the form 3., we fix z 6 X and try to build the solutions of

ul + Au + (C + 1)u 3 z, u(O) - x from Z. If A + wK is accretive, the time t mapping x

* u(t) so defined is a strict contraction and by a fixed point argument we conclude

that the problem has a constant solution u = x. Then x S D(A) and z - ( + 1)x S Ax.

This leads to the following construction of A. First extend 3 to K*M where P is the

space of piecewise constant functions. This is easy owing to (Z2). Z.g., if f - x on

0 i t ( a and f - w an a 4 t, put Z(xf)Ct) - Z(xz)(t) for 0 4 t 4 a and Z(xf)(t + a)

- Z(x,Zlx,z)Ca))Ct) if 0 ( t. Next use CR3) and the density of P in LioCl0,-tX) to

extend I to all of KxL ocCO,*SX)o Next fix z S X and x 6 K and solve

u - N(x,-(C + 1)u + z) by iterating: u0 
= x, and un - E(x,-( + 1)un.1). Observe that

x + etu(t) is nonexpansive and so there is a unique element of K fixed by the map

x + u(t) for all t. That is, x - Z(x,-(w + 1)x + %) has a solution. Defining A by

z - (w + 1)x S Ax yields an operator A with the desired properties.

In order to prove the results (ii) - (iv) a quite different path is taken. One

attempts to produce A by defining

(5.1) (1 + A 'A) -lim (I + X I- SM -1,
t+O

and the main work is to show the existence of a suitable (perhaps subsequential)

limit. See the comments section.
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The result Mi is a strong indication that if A + wX is accretive and the problem

(IYIP) 1 ,f has a mild solution on (0,.) for every x 6 D(A) and constant function f, then ~?

A is probably m-accretive. However, it does not quite say this, and there is an

* apparently open problem here. A variant of the question involved here is the problem

* of trying to give sufficient conditions and neccessary conditions for the solvability

of (IVP)1,, for arbitrary xe D (A).

For example, the following is an interesting sufficient condition: Let A + wS be

accretive and

(5.2) lim inf d(R(I + A),x) 0 for x 6 D(A),

where d(C,x) denotes the distance from the set C to x. Then the problem

(5.3) ul + Au 9 0, uCO) - x

has a mild solution on 10,o) for every x 6 D(A). We call the condition (5.2)

* 'Koayashi 's criterion". This is obviously a generalization of the range condition.

* It is also a sort of tangency conditions In the event that A is a continuous function

on D(A) it can be shown to be equivalent to the assumption that

(5.4) lim inrdf - A,() 0 for x 6 D(A).

If the limit inferior is replaced by the limit above, the statement just says that

departing from x in the direction of -Ax will leave D(A) at zero velocity.

In fact, necessary and sufficient conditions are known for the solvability of

(5.3).* For example, the following are equivalent if A + (a is accretive:

(a) (5.3) has a mild solution on [0,-) for every x 6 D(A).

(b) For every e > 0 and xO0 D(A) there is a 860 (0,c], an integer )I, and

6i Axi, hi )0 for i -1..Wsuch that

N N

*2hi-5 Ix 3x~- + hiyI <ca
i i1 y

-28-
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That (a) * (b) is trivial. The other implication requires interesting arguments which-

we will not sketch here. Do notice that Kobayashi's criterion is just the case (b) in

-. ~the particular situation V 1

Section 6. Regularity of Mild Solutions

In the generality we have been discussing, if A S &(w) the only strong solutions

of the problems u' + Au D f which are known to exist are the trivial ones, the

constants. That is u - x and f - y for all t where y S Ax. However, mild solutions

are a satisfactory extension of the notion of strong solutions, since mild solutions

are unique and strong solutions are mild. We have not addressed the other part of this

consistency question, namely if a mild solution turns out to be samooth", is it a

strong solution? Similarly, we have not given conditions under which mild solutions

are smooth. This we will do now. We do emphasize, before this, that even in

applications one does not want to be limited to strong solutions, since there are

important partial differential equations which simply do not have strong solutions.

A basic fact is the following consistency between the property A 6 A(w) and

differentiablity of mild solutions of u' + Au :- f.

Theorem 4. Let A 6 A(m), f I L (O,TSX) and u be a mild solution of . ,

u' + Au D f on (O,T). Let u have a right derivative ui(r) at T 6 (OT) and

t+h

im if (ft) - f (T) It - 0
h+O t .'-.

that is, T is a right Lebesque point of f. Then the operator A given by

ix = Ax for x i u(T)

(6.1) and

AuC(T) - AU(T)Ulf(T) - u11)..

satisfies A 6 A(w).
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If A + al is up-acoretive and A A(oa) is an extension of A (as is the case for the

gie by(.),te A. This maximality property Arises because if Awere

A givn by 6.1)) the

strictly bigger than A, then for A > 0 and )a < 1, (1 + )A ) would be a function

strictly extending the everywhere defined (I + )), and this is impossible. It thus

follows At oTe that if A + l. is m-accrtive and u 0s V
1

'(on:X) is a mild solution of

ug + Au .f, then u is a strong solution. When is a mild solution in W
1
'(0,TX)? The

principal conditions guaranteeing this are given by:

Prorooition 6. Let Ae A hm), f:(0,T X be of bounded variation and xs D(A). If u

is a mild solution of u' + Au B f an [0,T], than u is Lipschitz continuous. moreover,

o lf(O - YE + V(f,Y) + 1,IJ A 10 1(TT'V (f,-0dT,
0

where

u' + ] f !lVn f I t s -on sup~n Ifen +s h) -£1 f(lt) on d nr ' (  s ) ?  ....

t-h

h+0 0

is the variation of f over (0t), is a Lipechitz constant for u. If X is also

reflexive, then u S 111 1 (0 TaX).

That is, we have a regularity of u under the stated conditions which is

independent of , namly Lipschitz continuity. However, It is only under further

conditions on X (e.g., reflexivity) that this guarantees differentiab.ity and hence u U

1 
(0,TtX). In particular we have:

Corollary 1. Let A + Mr be -accretive, f l(0,TI * be of bounded variation,

x 6 D(A and X be reflexive. Then the mild solution of u' + Au f,

uO) -x is a Lipschitz continuous strong solution.

Under further restrictions on X mor* refined statentents about regularity can be

made, but they do not offer essential improvements over the information above and we

omit then here. Likewise, conditions like Kobayashi's criterion can be used to replace

m-accretivity of A + wZ in the case f 0 to deduce results like Corollary 1.

o_....

S. ..-
"o- ~%..o-
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40. V.

A question related to the regularity considerations above is the followings Since

the only known strong solutions are the constants in general, are they enough to

determine (somehow) the class of all mild solutions? Another motivation f or this

question is the observation that the definition of a mild solution is not very

scheckable. That is, given a function u, how can we tell if it is a mild solution of

*ul + As 3 f? Zn general, we cannot simply compute u' and see if the relation is

satisfied. Since y l Ax implies u- x solves ul + Au- y, we know by Theorem 3 that

any md solution of 4o + Au f satisfies

(6.2)lu(t) - xl 4 e(t-8)lu(s)-xlj t ew(t't)[u(i)-x,f(v)-yjdT for Osft(T.

a -7 .:

for y 0 Ax. Zn fact, this family of inequalities can be taken to define a clasen of 7

solutions called integral solutions. However, as opposed to mild solutions, the notion

depends on the nor& of I via the bracket and in appropriate only if A 6 1().

Moreover, it is not a good notion in general in the sense that it is easier to be an

integral solution for a restriction of A than for A itself. However, it is a

uniqueness criterion provided mild solutions are known to exist (which guarantees that

A is "big enoughO for the notion to be satisfactory). Nore preciselys

Theorem S. Tet A I A(w), f I L1(o,TsX) and v be a mild solution of v' + Av 3 f on

[O,T). If u a C[O,TXI] satisfies (6.2) for every y 9 Ax and u(O) - v(O), then v - u.

Benco if the existence of a mild solution is known, then one can determine if a

given function is this mild solution or not according as to whether or not the

relations (6.2) hold.

Section 7. Auxiliary Results: Continuity, Trotter Products and Compactness

In this section we formulate a variety of auxiliary results in the subject which

give additional useful information. rirst among these addresses the problem of the

dependence of the solution of

(*VP)x,f u' + Au B f, u(O) - x,

on A. Zn order to formulate the results in a multivalued generality ve recall the
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notion of the limit inferior of a sequence A. of operators. The operator lir inf A. is

defined by y e lrm inf Anx if and only if there is a sequence Yn e Anxn such that

Xn *x and yn + y. We will meet the condition A C i. inf An below, and it will sake

things a bit clearer if we recall the following equivalent condition in the m-accretive

case.

Proposition 7. Let An + wl be m-accretive for n - 1,2,..,. (with - explicitly

included). Then A. C lim inf An if and only if

(7.1) lim (U + AA ) x ( + )A) x for x e x

for X > 0 and Xw < 1. Moreover, (7.1) holds for all such X if it holds for one such

We call the condition (7.1) "resolvent convergence*. Now let us formulate the

continuous dependence theorem in some generality.

Theorem 6. Let An a A(W), fn e L 1
(0,T:X) for n - 1,2,..,-. Let un be a mild solution

of A + Anun - fn on [0,T] for n 1,2,...,.. Let AC lim inf An and

. T

lim j Ifnlt) - f.(t)ldt + Iun(0) u.(0)l 0.
n- o

Then un u u. uniformly on [0,T].

This result, in the m-accretive case, says that if intitial data converge, the

forcing terms converge in LI(0,T:X), and the resolvents of the An converge, then the

solutions converge. More generally, it makes the same claim provided only that the

solutions exist. The method of proof involves observing that, by definition,

A. C lim inf An implies that given any neighborhood of an aproximate solution of u." +

Au. 9 f. then for n large enough we can find an approximate solution of u + Anun -fn-

in this neighborhood and then using the estimates in the proof of the convergence

theorem. The utility of such a result is clear. For example, one may use it to prove

the approximation result described next. If A + Al is m-accretive we may define the

Tosida approximation An of A for small n > 0 by An " l'I(I - (I + nA)-I). Clearly A

-32-
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is Lipschitz continuous with 2 "1i as a Lipschitz constant and it is easy to se that

A + / - ino)l is accretive. Since, as the reader could check, (I + AIu) 1 (+ +.

A)-1 as n 0. the continuous dependence theorem implies that the solution ul of

problem with A replacing A as n + 0. Since A is Lipechits continuous, this is a

natural way to approximate u by regular functions in a fashion closely related to the

* original problem.

Another sort of result of wide applicability can be motivated as folloeas Suppose

we want to solve

(7.2) u' + Au + u- 0, u(0) -x,

and that we know the solutions of the Cauchy problm for the separate equations

(7.3) u' + n " 0, v, + 3v - 0,

in the form of the semigroups By and 13 and that A and 3 are functions. Assuming a

large (and totally unreasonable) uamnt of regularity one computes

WS C)(t)x' -AX+ ft.

That is, infinitesimally r(t) - SA(t)BB(t) looks like 8A41(t) should look. Moreover,

r(t)x in well behaved as a function of x. Can we not then represent BA+, in term of

7(t)? One has the following theorem to this effects

Theorem 7. Let A 6 A(w) satisfy the range condition (3.24) and C - O(A) be convex.

For each t > 0 let r(t)sC + C and r satisfy:

Ui) Ir(t)x - r(t)yl 4 etIx- yl for x, y 0 C and 0 - t 4 1.

t+O

Then for each x 6 C, SA(t)x - ha 7(t/n)nx uniformly on compact t-sets.
n~f

It is part of the proof that the inverses used in (ii) exist. This result applies . -

in the "A + 20 case above provided that one can verify the resolvent condition (ii)%

given A and D. Zn this event, the conclusion is called a %Trotter product" formula.

However, there are many other circumstances under which one can verify the hypotheses
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of the theorem. The proof consists of using the estimates of the convergence theorem

together with another interesting approximation result, which we state for interest's

N sake In a special case.
N

Proposition S. Let C C X be closed, FiC C be nonexpansive and h O. If the

initial-valus problem

u' + h 1 (x - r)u -0, u(O) x e c

has a mild solution an (0,T), then

IF% - u(t)s 21x - l + ((n - 2 + n) Is - al

holds for every s 0 C, 0 4 n and 0 4 t< T. In particular, choosing x- z and t nh we

have

IF x -u(nh)3 I Vmix -FxI.

The last sort of auxiliary result we discuss here concerns compactness. We fix an

operator A with A + m-accretive and consider the initial-value problem

(IVP)x,f  u' + Au a f. u(O) -X,

whose mild solution u we denote by U(xf). If f 0, then u(t) Z 3(xO)(t) (t)x-

where is the semigroup generated by -A, and we will use this notation below. We ask

when the images of various sets under 2 are compact in various senses. The simplest

question concerns the semigroup case. A function in X is called compact if It maps

bounded subsets of its domain into precompact sets in X and a smigroup 8 is campact if

each 8(t) is compact for t > 0.

Theorm U. Tet A + mE be m-accretive and 8 the semigroup on D(A) generated by -A.

Then S(t) is compact if and only if the following two conditions are satisfied:

(i) For each small X. • 0 the operator JX is compact. .

(ii) For each bounded subset B of D(A) and a s 0

lim S(t)x - S(m)x holds uniformly for x 6 B.

In applications to partial differential equations, compactness of 3(t) tends to

arise from regularizing properties, that is 8(t)x will lie in a more regular class of

functions for t > 0 than at t - 0. Another sort of compactness one is interested in is -
%!
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the compactness of the trajectory 7...

tr(x) jf(xf)(t), 0 ( t}

of the solution of c1VP~xf. Compactness of trajectories is useful in making dynamical

system type arguments concerning the asymptotic behaviour of u. Concerning this

property one has:

Theorem 9. Let A be m-accretive, 0 0 R(A), f Ll([O,"):X) and x 3A). In addition,

let (I + )A)-
1 

be compact for some X > 0. Then tr(x) is precompact.

The first conditions in the Theorem guarantee that tr(x) is bounded and the compactness

come from the assumption on J..

Next we look at the solution operator for (IVP) and consider when it is compact as

a function of f for fixed x @ D(A). There arises the question of what topologies to

use in the domain and range space here, and the next result contains an answer.

Theorem 10. Let A + wX be m-accretive and 8(t) be the semigroup generated by -A. Fix

x 6 D(A) and p > 1. Let Q ,LP(0,TX) - C[O,.] be given by

Q(f) -(x,f). If S(t) is a compact semigroup, then Q is a compact operator.

This result is unsatisfactory in that it does not allow the natural generality of

f LI(0,TtX). It is possible to treat this case if we are willing to weaken our

requirements in the range space. Moreover, we can then vary x as well.

Theorem 11. Under the assumptions of Theorem 10, if 8(t) is a compact smigroup then

the solution operator 3 is compact as a mapping

ZD(A)xL (0,T:X) + LP(0,:X)

for 4 p <.

Section 9. Comments and References

In this section we amplify on the main text a bit and provide some basic

references for the interested reader. No attempt has been made to be complete, and

nothing like completeness has been achieved. However, the references we do quote

together with the references they contain should suffice to accurately represent the "'-
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situation. Let us begin by noting that there are several books in the general area.

The theory in Hilbert spaces is well developed in Bresis (171. The general case is

treated in Ds Prato [36], Barbu [51 and Pavel [721, (731. The books of Martin (64] and

Browder (241 also treat aspects of the theory. The references provided by these works

are not subsumed here and the reader will find many applications to partial

differential equations in Barbuls book.

On Section 1. Early attempts to represent nonexpansive semigroups were made by

Neuberger (691 Oharu (70] and loura (591, (601. mura's dramatic ideas were a min

stimulus for the rapid develoyment which followed (e.g., Xato (49, (501, Crandall and

Pazy (341, Dorrob (411 and Browder (231).

The bracket [ , ] and the duality map J are well known in functional analysis.

However, nomenclature and notation are inconsistent. For example, in Reich (873 of

this volum, 3(x) denotes what would be written txlJ(x) in our notation. Sato (881

provides specific computations of the duality map, but the reader can work out what J

and [ , ] are for the common spaces. Workers in this subject learned Proposition I

(ix) in Xato (491. If 3 is not single-valued, a stronger condition than Definition 1

(iii) arises when the conclusion is required to hold for all x S J(x - x). An operator

with this property is sometime called a-accretive (or OBrowder accretive", since this

notion was taken to define accretive in Browder (231). If 3 is single-valued on X/10j

the notions coincide. Interest in a-accretivity arises from facts like A + B Ams

accretive whenever A and 9 are and at least one of them is a-accretive.

Mmura (59] is sometims cited in this subject for a proof of the fact that if X

is reflexive and f:(0,T] + X is Lipschitz continuous, then f E W
1
'I(,T:X), but

theorems of Radon - Mikodym type for reflexive spaces were already proved by

Phillipe [77] and Dunford and Pettis (42). Reflexive spaces are but examples of spaces

with the Radon - Nikodyn property. ".

On Section 2.

The notion of a mild solution is already suggested in Crandall and Liggett [32],

although it was too early at that time to institutionalize the idea. The term *ald"
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i It~Kbayasi1 [53], an PiLerre [78). There are many quesJtions on can ask about ,mild .

solanrs ihnch have not been n rio ly apetbed. r aimple, nt wi knon shat .

mild solution in the current sene cannot necessarily be apprcxd.ated by solutions of

disoretizatione with uniform atep - but it is not known If this is true when, eog., a

is a•Cceti e. It is known that if f - 0 and X - R and A is acaretive, then u ifom

steps are enough. (Unpublished results of Crandall and Pierre). In most applications

them issues are not serious, as A is either m-acretive or satisfies a variant of the -7.

K range condition (3.22). R . Martin 1631 proved that continuous scretive operators are

a - accretive.

It is also known that mild solutions defined, as we have done, in the implicit way

(2.6) (i.e., A is evaluated at vi ) differ from those defined in the explicit way in

which Avi in replaced by An...1 in (2.6). Indeed, it is easy to see that u~t) is the

limit of solutions of explicit appmimations of u' + Au D 0 iff v(t) - ut-t) is a mild

solution of v' + Av 3 0. The case of a single conservation law, a partial differential .

equation whose relevant solutions are not reversible and which an be acoomodated in

the theory ([293) provides a significant counterexample. Proposition 3 Is selected

from (131. "

The notion of a *strong oolution" is standard, but sometimes people prefer to

weaken it to require the continuity of the solution on [0,T] and what we have called a .

strong solution on [¢,T) for each )o 0. This accomodates more examples and still

allows one to do "calculus" without undue worry about the validity of the

manipulations.

2xamples of badly behaved nonlinear semigroups occur in [321, Plant [821 and Webb

[92,931, but mild solutions which are not strong solutions are familiar even in the

linear theory when initial data do not lie in D(A) or f is not sufficiently regular (in

which case the variation of parameters formula typically provides such sulutions).
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On Section 3.

The first proof that solutions of difference approximations converge (in a more

restricted context, but with general X) was in [321. Rasmussen (831 provided a useful

proof. Takahashi (89] gave a more general convergence proof with variable steps.

Benilan [71 proved the existence and uniqueness of mild solutions for

ul + Au 3 f when A is -accretive. The existence also follows from results of Crandall

and Pazy (351.

The full Theorem 1 was first proved in Crandall and Rvans 1311 by the fun method

sketched here. One finds appropriate error estimates in (311 as well. The result in

the case f - 0 was obtained by Y. Kobayashi [531 who formulated his results for quasi-

secretive operators, a notion which generalizes the accretive case and which was

introduced by Takahashi (891, but for which significant nonaccretive examples are

lacking. Kobayashi's method was different (and simpler) in the case f - 0, but it

becomes more complex in the general case. See also Takahashi (891, [901. The reader

may consult K. Kobayasi [56] and K. Mobayasi, Y. Kobayashi, and S. Oharu (57] for even

more general results by this method.

Indeed, there are a variety of generalizations of the above to time dependent

equations of the form u' + A(t)u 3 f, although it is not easy to be satisfied with any

particular set of technicalitites or definitions in this case (as is already true in

the linear setting). We mention that Kato [501 and Crandall and Liggett 1321 already

allowed some time dependence, while Crandall and Pazy (351 is sore general. The case

of wintegrablen time dependence was handled in *vans [43] using the results of [311 (in

essence, Theorem 2), and there is also the elegant and different approach of Pierre

(791. The recent works 157], which was mentioned above, Iwayami, Oharu and Takahashi

(471, and K. Kobayasi and 8. Oharu (581 extend the theory in various significant

ways. It would be interesting to know the precise relationship between the convergence

assertions in these works and Theorem 2. .

. %.
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On Section 4. 7

The theory of Kato referred to is the simplest context described in his survey

[511 in this volume, and we refer the reader to this paper for appropriate ".

references. The relationship with the nonlinear theory sketched here is noted in

Crandall and Souganidis [37], and can be greatly generalized. See also Hazsan [46 in

this regard. if the assumptions of this Section are strenghtened by requiring the

existence of an operator StY + X with the properties described in (511, then the

conclusions of this Section can be strengthened to assert that the difference

approximations converge in the strong topology of Y uniformly in t and the proof can be

adapted to prove the continuity of the solution as a Y-valued function (and the

assumption (B3) dropped). This is done in Crandall and souganidis (38]. Another work,

which is in a more preliminary stage, extends these results to the variable norm

setting explained in Kato's article in this volume.

On Section S.

The result i) is due to Benilan (71. The result (ii) follows from Crandall and

Liggett (32]. The biunique correspondence of (iii) was proved by Crandall and Pasy

(341. The existence of an m-accretive A such that S = SA in Hilbert spce in this

generality involves Minty's theorem, which essentially states the equivalence of %

"maximal monotone" and "m-accretive" in Hilbert spaces, and this result fails in

general. (See Crandall and Liggett [33) and Calvert (271.)

The idea to obtain A via (5.11) is Komura's ((601), and so is the first proof of

the existence of this limit in Hilbert spaces. This result was the hardest step in the

proof of (iii). New ideas had to be introduced to extend this convergence result

outside of Hilbert spaces, and this was done by Baillon [3]. Reich sharpened this line

of the theory, and (iv) can be found in 184]. We refer to Reich (95,861 for further

references and discussion. See also (97], Theorem 1.6. By the way, the results of

-39- "".
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(33] to the effect that the limit (5.11) always exist if X is two dimensional but may

fail to exist if X is three dimensional show that the success of this approach must

involve geometrical considerations.

The sufficiency of Kobayashi's criterion (5.2) for the solvability of (5.3) was a

fascinating result of 153]. This result allowed very slick proofs of m-acccretivity if

operators of the form A + B where A is m-accretive and B is continuous and accretive,

generalizing results of Martin (63], Webb (93], and Barbu (6]. The equivalence of

(5.2) and (5.4) is remarked in [30]. Numerous people, including Kaplan and Yorke [48]

and Takahashi (89], contributed to the development of this line of thought . The

sufficiency of (b) is an unpublished result of Y. Kobayashi. He also shows (b) is

equivalent to another condition related to the sufficient conditions of Pierre [801.

One also finds examples indicating the distinction between various conditions in (801.

Section 6.

The results on regularity of mild solutions we will regard as being *from the

community, but let us mention that the main facts were not so obvious in the

beginning. It was mentioned in Section 2 that a strong solution is a mild solution -

this is not entirely obvious. Theorem 4 is the heart of results in the other direction

- it implies that differentiable mild solutions satisfy the equation pointwise if A is

"big enouqhm in the sense that the operator of (6.1) cannot properly extend A (and so

mild solutions are strong if they are regular enough). Theorem 5 is a simple version

of Benilan's uniqueness theorem ([7]).

Section 7.

Theorem 6, in this general formulation, may not appear in the literature. (We are

using a formulation from (13]). See, however, Miyadera and Kobayashi (66], and results

in this spirit in general Banach spaces go beck to Denilan (7), Brezis and Pay (20],

Kurtz (62] and Goldstein (45]. For examples of substantial applications of this result

in pde see, e.g., Senilan and Crandall [10] or Kenmochi and Oharu (52).

.. .-
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Theorem 7, the conclusion of which is called the nonlinear Chernoff formula, is

due to Brezis and Pazy t201. An earlier version and Proposition 8 are due to Miyadera

and Ohau (68]. Theorem 7 has many applications in pde - see, e.g., Berger, Brezis and

Rogers (16], Coron (28], Kenmochi and Oharu [52], and Oharu and Kobayasi (58]. There

has been a fair amount of recent activity concerning results of this general type in

special circumstances. See, e.g., Benilan and Ismail f15], Reich [85,86], Kobayashi

(54], (55] and their references. M. Pierre (81] has recently obtained quite

interesting results (both positive and negative) on the validity of more general

formulae involving nonuniform steps. -

One can ask to what extent the implications in Theorems 6 and 7 are reversible and

be led thereby to the question of convergence versus resolvent consistency. Since the

conclusion of Theorem 7 always holds if F(t) - S(t), this links up with the problem of

the existence of the limit (5.1). See Reich [86] for recent results and references.

The various compactness results are proved in Brezis [16], Dafermos end Sleserod

[39] and Baras (4]. See Konishi (61] for an early result of this type and Brezis and

Friedman (19] for an application in pde.

Asymptotic Behaviour.

We have ommitted the topic of asymptotic behaviour. The works of Bruck [25] and

Baillon [2] stimulated a large amount of subsequent work on these lines of research,

and the area remains quite active. The survey article Bruck (26] is a recent source on

this topic and we refer the reader to it. Other recent sources on aspects of this

question include Pazy (74], [75], [76], Reich [87], Miyadera (65], and - in a somewhat

different vein - Alikakos and Rostamian [1].

Regularizing Effects. A final topic we mention is that of regularizing effects. These .2'
concern questions of regularity - interpreted in various ways - of 8(t)x for t > 0 that

x itself may not enjoy. There is no general theory available yet, but the phenomenon

is widespread and of considerable interest when it is present. On the abstract side, S. "

the best known examples are the regularizing effects of linear analytic semigroups and

semigroups generated by subdifferentials of convex functions in Hilbert spaces (see

-41-
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(171). In the general nonreflexive case we have some examples, e.g. those of Denilan

(8,91, Veron (911, Denilan and Crandall (121, and Crandall and Pierre 136). A new

regularizing semtigroup in also discussed in Reich (871. One wonders if there is an

informative unifying point of view which might relate thee various examples.

-42-
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